首页> 外文OA文献 >Saccharomyces cerevisiae Rrm3p DNA Helicase Promotes Genome Integrity by Preventing Replication Fork Stalling: Viability of rrm3 Cells Requires the Intra-S-Phase Checkpoint and Fork Restart Activities
【2h】

Saccharomyces cerevisiae Rrm3p DNA Helicase Promotes Genome Integrity by Preventing Replication Fork Stalling: Viability of rrm3 Cells Requires the Intra-S-Phase Checkpoint and Fork Restart Activities

机译:酿酒酵母Rrm3p DNA解旋酶通过防止复制叉停转来促进基因组完整性:rrm3细胞的活力需要S阶段内关卡和叉重新启动活动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rrm3p is a 5′-to-3′ DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.
机译:Rrm3p是一种5'至3'DNA解旋酶,可帮助复制叉穿过蛋白质-DNA复合物。它的缺失会导致整个酿酒酵母基因组中超过1,000个特定位点的叉子停滞和断裂增加。为了了解响应和修复rrm3依赖性病变的机制,我们进行了候选基因缺失分析,以鉴定其突变赋予rrm3细胞缓慢生长或致死性的基因。基于合成表型,S阶段内检查点,SRS2重组抑制剂,SGS1 / TOP3复制叉重启途径和MRE11 / RAD50 / XRS2(MRX)复合物对于rrm3细胞的生存能力至关重要。 DNA损伤检查点和同源重组基因对于rrm3细胞的正常生长很重要。但是,MUS81 / MMS4复制叉重启路径不会影响rrm3细胞的生长。这些数据表明了一个模型,其中在rrm3单元中生成的停滞和损坏的叉子激活了一个检查点响应,该响应为叉子修复和重新启动提供了时间。摊叉通过Rad51p介导的过程转换为由Sgs1p / Top3p解析的中间体。 rrm3系统提供了一个独特的机会来学习货叉的命运,货叉的命运受到自然障碍而不是外源DNA损害的影响。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号